Diameter of a Graph with Theorems

Some more terminology on Graphs

Definitions:

Distance: Denoted as $d(U, V)$,it is number of edges in a shortest path between Vertex U and Vertex V. If there are multiple paths connecting two vertices, then the shortest path is considered as the distance between the two vertices.

- There can be any number of paths present from one vertex to other. Among those, you need to choose only the shortest one.
- Example

Take a look at the following graph -

- Here, the distance from vertex 'd' to vertex 'e' or simply 'de' There are many paths from vertex ' d ' to vertex ' e ' -
- da, ab, be
- df, fg, ge
- de (It is considered for distance between the vertices)
- df, fc, ca, ab, be
- da, ac, cf, fg, ge

Graph Gı

Some more terminology on Graphs(cont.)

- Eccentricity of a Vertex: The maximum distance between a vertex to all other vertices is considered as the eccentricity of vertex.
- Notation-e(V)
- The distance from a particular vertex to all other vertices in the graph is taken and among those distances, the eccentricity is the highest of distances.
- Example: In the above graph G1, the eccentricity of VERTEX 'a' is $e(a)=3$.
- Similarly, e(b) $=3$,

$$
e(c)=3,
$$

$$
e(d)=2
$$

$e(e)=3$
$e(f)=3$

$$
e(g)=3
$$

- Radius of a Connected Graph: The minimum eccentricity from all the vertices is considered as the radius of the Graph G . The minimum among all the maximum distances between a vertex to all other vertices is considered as the radius of the Graph G.
- Notation -r(G)
- From all the eccentricities of the vertices in a graph, the radius of the connected graph is the minimum of all those eccentricities.
- Example: In the above graph Radius of a Connected $\operatorname{Graph} \mathrm{Gl}=\mathrm{r}(\mathrm{G})=2$, which is the minimum eccentricity for 'd'.

Some more terminology on Graphs(cont.)

- Diameter of a Graph: The maximum eccentricity from all the vertices is considered as the diameter of the Graph G. The maximum among all the distances between a vertex to all other vertices is considered as the diameter of the Graph G.
- Notation - d(G)
- From all the eccentricities of the vertices in a graph, the diameter of the connected graph is the maximum of all those eccentricities.
- Example - In the a graph G1 in second slide , Diameter of a Graph $=\mathrm{d}\left(\mathrm{G}_{1}\right)=3$; which is the maximum eccentricity.
- Central Point: If the eccentricity of a graph is equal to its radius, then it is known as the central point of the graph.
- i.e. If $e(V)=r(V)$, then ' V ' is the central point of the Graph ' G '.
- Example - In the example graph Gr_{1}, ' d ' is the central point of the graph.
- Because $e(d)=r(d)=2$

Some more terminology on Graphs(cont.)

- Centre: The set of all central points of Graph ' G ' is called the centre of the Graph.
- Example - In the above graph $\mathrm{G} 1,\left\{{ }^{\prime} \mathrm{d}\right.$ ' $\}$ is the centre of the Graph.
- Circumference: The number of edges in the longest cycle of Graph ' G ' is called as the circumference of ' G '.
- Example - In the above graph G1, the circumference is 6, which one can derive from the longest cycle a-c-f-g-e-b-a or a-c-f-d-e-b-a.
- Girth: The number of edges in the shortest cycle of Graph ' G ' is called its Girth.
- Notation - $g(G)$.
- Example - In the above graph G1, the Girth of the graph is 4, which one can derive from the shortest cycle a-c-f-d-a or d-f-g-e-d or a-b-e-d-a.

Theorems on Diameter of a graph
Theorem 1: If G is a simple graph with diameter greater or equal to 3 then Diameter of Complement of graph G is less or equal to three
prows

$$
\operatorname{diam}(h) \geqslant 3 \Rightarrow \operatorname{diam}(\bar{h}) \leq 3 .
$$

$$
\text { When } \operatorname{diam}(a) \geqslant 3 \text {, the are non-adjaens }
$$

$\overline{\varepsilon_{2}}$
t For every pair on vorrias $x, y \in V-\{u, u\}$ to almost one or $\{u, v\}$ in G
 thane is a path of leyte arose 3 in \bar{h}.

$$
\begin{aligned}
& \frac{d}{a}(x, y) \leqslant 3 \\
& \operatorname{diam}(\bar{G}) \leqslant 3
\end{aligned}
$$

Theorems on Diameter of a graph
Theorem 1: If G is a simple graph with diameter greater or equal to 4 then Diameter of Complement of graph G is less or equal to 2

Theron if $\operatorname{diam}(h) \geqslant 4$, then $\operatorname{diam}(\bar{h}) \leqslant 2$.
puns $\operatorname{sinue} \operatorname{diam}(a) \geqslant 4$, true exist a pair

\bar{a} of vorias $u, v \in V$ sues trust $d_{G}(u, u) \geqslant 4$.

Suppose $(x, y \in V-\{u, u\}$
we need to prove mun $d_{\bar{q}}(x, y) \leqslant 2$.

$$
\frac{d_{a}}{}(x, y)=2
$$

Case 1

Case 3

Arum $(x, u) \in E(a) \&(y, v) \in E(h)$ if $(x, y) \in E(h)$, then $d_{n}(u, x)=3$
This Contradict the assumption $d_{a}(u, u) \geqslant 4$ Therefore a $(x, y) \notin \in(a)$ and hence $(x, y) \notin E(\bar{\xi})$. So $d_{\bar{h}}(x, y)=1$

