Diameter of a Graph with Theorems

Faculty Incharge:

Adil Mudasir

Some more terminology on Graphs

Definitions:

Distance: Denoted as d(U,V), it is number of edges in a shortest path between Vertex U and Vertex V. If there are multiple paths connecting two vertices, then the shortest path is considered as

the distance between the two vertices.

- There can be any number of paths present from one vertex to other. Among those, you need to choose only the shortest one.
- Example

Take a look at the following graph -

- Here, the distance from vertex 'd' to vertex 'e' or simply 'de' i There are many paths from vertex 'd' to vertex 'e' –
- da, ab, be
- df, fg, ge
- de (It is considered for distance between the vertices)
- df, fc, ca, ab, be
- da, ac, cf, fg, ge

Graph G1

Some more terminology on Graphs(cont.)

- Eccentricity of a Vertex: The maximum distance between a vertex to all other vertices is considered as the eccentricity of vertex.
- Notation e(V)
- The distance from a particular vertex to all other vertices in the graph is taken and among those distances, the eccentricity is the highest of distances.
- Example: In the above graph G₁, the eccentricity of VERTEX 'a' is e(a)=3.
- Similarly, e(b) = 3, e(c) = 3, e(d) = 2e(e) = 3 e(f) = 3 e(g) = 3
- <u>Radius of a Connected Graph</u>: The minimum eccentricity from all the vertices is considered as the radius of the Graph G. The minimum among all the maximum distances between a vertex to all other vertices is considered as the radius of the Graph G.
- Notation r(G)
- From all the eccentricities of the vertices in a graph, the radius of the connected graph is the minimum of all those eccentricities.
- Example: In the above graph Radius of a Connected Graph $G_1 = r(G) = 2$, which is the minimum eccentricity for 'd'.

Some more terminology on Graphs(cont.)

- **Diameter of a Graph:** The maximum eccentricity from all the vertices is considered as the diameter of the Graph G. The maximum among all the distances between a vertex to all other vertices is considered as the diameter of the Graph G.
- Notation d(G)
- From all the eccentricities of the vertices in a graph, the diameter of the connected graph is the maximum of all those eccentricities.
- **Example** In the a graph G₁ in second slide , Diameter of a Graph = $d(G_1) = 3$; which is the maximum eccentricity.
- <u>Central Point</u>: If the eccentricity of a graph is equal to its radius, then it is known as the central point of the graph.
- i.e. If e(V) = r(V), then 'V' is the central point of the Graph 'G'.
- **Example** In the example graph G₁, 'd' is the central point of the graph.
- Because e(d) = r(d) = 2

Some more terminology on Graphs(cont.)

- **<u>Centre</u>**: The set of all central points of Graph 'G' is called the centre of the Graph.
- **Example** In the above graph G1, {'d'} is the centre of the Graph.
- <u>**Circumference:</u>** The number of edges in the longest cycle of Graph 'G' is called as the circumference of 'G'.</u>
- **Example** In the above graph G1, the circumference is 6, which one can derive from the longest cycle a-c-f-g-e-b-a or a-c-f-d-e-b-a.
- **<u>Girth</u>**: The number of edges in the shortest cycle of Graph 'G' is called its Girth.
- Notation g(G).
- **Example** In the above graph G1, the Girth of the graph is 4, which one can derive from the shortest cycle a-c-f-d-a or d-f-g-e-d or a-b-e-d-a.

Theorems on Diameter of a graph

Theorem 1: If G is a simple graph with diameter greater or equal to 3 then Diameter of Complement of graph G is less or equal to three

Prof soumers - Windows Journal	
File Edit View Inset Actions Taols Help D D D D D V A D D D C Minis Face - V	
B/	
merrum il a ica simple anothe term	
If or is no simple griph, inter	ле У
$diam(h)$ 7, 3 => $diam(h) \leq 3$.	(999) (199) (199)
Proch when diam(a) >, 3, more one non-adjacent	Contraction of the second seco
stanting is \$2\$ G 1/ with the common neighbor	5
Verner de la C P de la Comment Regeleri	1 For even pair of version 2 4 6 V-5442
Every vorrepo & E V - [76, 4, 22] is adjacent	
to atmost one of surves in G	there is a path of length atmos 3 in G.
	d(2, y) < 3
(200) (000) (009)	4
	diam (G) < 3
	- / 2
	*
G.	

Theorems on Diameter of a graph

Theorem 1: If G is a simple graph with diameter greater or equal to 4 then Diameter of Complement of graph G is less or equal to 2

Prof soumen - Windows Journal	- 8
e Edit View Insert Actions Tools Help	
B/	
Theorem If diam(G) 7, 9, then diam(G) 52.	<u>Calle 2</u> (2)(9) (2)
proch since diam (a) 7, 4, true exist a pair	
it it is a to a true but the of a	6 6
of vorias a, or EV show that a (1, 1) / 4.	-2
	$d_{n}(x,y)=2$
Suppose $\{x, y \in V - 2u, u\}$	n
we need to prove that d_(x,y) <2.	
4	CAM 3 (2) (2) (2) (3)
(n) (n) (n) (n) (n)	- 1 7 .
Case I	a a a
	W G
- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Accum la un a calla de la and a sala
G G	
This is possible in a	$(x,y) \in E(h)$, then $d_h(u,v) = 3$
d(x, y) = 2	This contradich the assumption da (4,4) >,4
G (, ,) - L	morehove in (x, y) E F (G) and hence